Exact Tracer Diffusion Coefficient in the Asymmetric Random Average Process

Gunter M. Schütz¹

Received August 30, 1999

We study tracer diffusion in the continuous-time asymmetric random average process which is an interacting particle system on \mathbb{R} generalizing the Hammersley process. From the equations of motion for the particle-position correlations we obtain the exact tracer diffusion coefficient which is in agreement with a recent heuristic result by Krug and Garcia.

KEY WORDS: Interacting particle systems; random average process; tracer diffusion.

Recent work on interacting particle systems far from equilibrium has focussed on lattice models such as the asymmetric exclusion process and other lattice gas systems.⁽¹⁻³⁾ Comparatively little is known about particle systems defined on the real line which have appeared e.g., in the context of traffic flow,⁽⁴⁾ force propagation in granular media⁽⁵⁾ and interface fluctuations.⁽⁶⁾ Closely related to the models of refs. 5, 6 is the continuous-time version of the asymmetric random average process studied recently by Krug and Garcia.⁽⁷⁾ In this model, a generalization of the Hammersley process,⁽⁸⁾ point particles on \mathbb{R} jump with constant rate 1 from position x_i to the right to $x_i + \delta_i$ where δ_i is a random fraction of the headway

$$u_i = x_{i+1} - x_i \tag{1}$$

The moves occur in continuous time, i.e., each particle carries its intrinsic exponential clock: When the clock rings (after an exponentially distributed

¹ Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany.

Schütz

random time with parameter 1), the move is executed. The random jump length δ_i is chosen according to a probability density

$$f_i(\delta_i) = u_i^{-1} \phi(\delta_i/u_i) \tag{2}$$

normalized to $\int_0^1 dr \, \phi(r) = 1$.

In ref. 7 it was shown that the stationary two-point headway correlation function $\langle u_i u_j \rangle$ of this model factorizes for $i \neq j$. Moreover, for i = jthe second moment $\langle u^2 \rangle$ of the headway distribution is given by

$$\langle u^2 \rangle = \frac{\mu_1}{\rho^2(\mu_1 - \mu_2)} \tag{3}$$

where $\rho = 1/\langle u \rangle$ is the stationary particle density and

$$\mu_n = \int_0^1 dr \, r^n \phi(r) = \frac{1}{u^{n+1}} \int_0^u dr \, r^n \phi(r/u) \tag{4}$$

are the moments of the jump length distribution.

In order to determine the statistical properties of a tracer particle we introduce the time-dependent joint probability densities $P_{i_1,...,i_k}(x_{i_1},...,x_{i_k})$ of finding the particles with label i_j on positions x_{i_j} . For notational simplicity the dependence on time (and on the initial distribution) is dropped. The mean position $\langle X_i \rangle$ of a tracer particle *i* is then given by

$$\langle X_i \rangle = \int_{-\infty}^{\infty} dx \, x P_i(x) \tag{5}$$

This yields the stationary drift velocity

$$v = \lim_{t \to \infty} \frac{d}{dt} \langle X_i \rangle \tag{6}$$

In a similar fashion the tracer diffusion coefficient is obtained from the asymptotic mean square displacement

$$D = \lim_{t \to \infty} \frac{d}{dt} \left(\langle X_i^2 \rangle - \langle X_i \rangle^2 \right) \tag{7}$$

These quantities do not depend on *i*. For the velocity one finds $v = \mu_1 / \rho$.⁽⁷⁾ The main result of this paper is the exact derivation of the steady-state diffusion coefficient

$$D = \frac{\mu_1 \mu_2}{\rho^2 (\mu_1 - \mu_2)} \tag{8}$$

1046

Tracer Diffusion in Asymmetric Random Average Process

obtained also by Krug and Garcia using two independent heuristic arguments which lead to an effective Langevin equation for the motion of the tracer particle and an independent-jump approximation respectively.

The key ingredient in calculating v and D is the master equation obeyed by the joint probability densities $P_{i_1,...,i_k}(x_{i_1},...,x_{i_k})$. E.g., for k = 1 one has

$$\frac{d}{dt}P_{i}(x) = -P_{i}(x) + \int_{0}^{\infty} dy_{1} \int_{0}^{\infty} dy_{2} \frac{1}{y_{1} + y_{2}}$$
$$\times \phi\left(\frac{y_{1}}{y_{1} + y_{2}}\right) P_{i, i+1}(x - y_{1}, x + y_{2})$$
(9)

The negative contribution results from the particle hopping away from x, while the positive part counts all possibilities of jumping from a position $x - y_1$ to x in the interval $[x - y_1, x + y_2)$ between particles i and i + 1. Analogously one finds expressions for higher order joint probability densities.

From the joint probability densities one can calculate the expectation values $\langle X_{i_1} \cdots X_{i_k} \rangle$. The key observation necessary for calculating *D* is the fact that the equations of motion for these expectation values form a closed set for each level *k*. E.g., for k = 1 one finds $d/dt \langle X_i \rangle = \mu_1(\langle X_{i+1} \rangle - \langle X_i \rangle)$ which immediately yields the stationary tracer velocity $v = \mu_1/\rho$. The extension to higher order correlation functions is rather tedious, but straightforward. Of particular interest is the quantity

$$C_{i,j}(t) = \langle X_i X_j \rangle - \langle X_i \rangle \langle X_j \rangle \tag{10}$$

After a lengthy sequence of manipulations of integrals involving shifting integration intervals and interchanging the order of integration we find

$$\frac{d}{dt}C_{i,j} = \mu_1[C_{i,j+1} + C_{i+1,j} - 2C_{i,j}] + \mu_2 \langle u_i^2 \rangle \,\delta_{i,j} \tag{11}$$

with the Kronecker symbol $\delta_{i, j} = 1$ for i = j and 0 else. This yields the time derivative of the mean square displacement $d/dt C_{i, i} = \mu_2 \langle u_i^2 \rangle + 2\mu_1 (C_{i, i+1} - C_{i, i})$ and hence an expression for the diffusion coefficient.

To calculate D we use $C_{i,i+1} - C_{i,i} = \langle X_i u_i \rangle - \langle X_i \rangle \langle u_i \rangle$ and therefore

$$C_{i,i+1} - C_{i,i} = C_{i-1,i+1} - C_{i-1,i} + \langle u_{i-1}u_i \rangle - \langle u_{i-1} \rangle \langle u_i \rangle$$
$$= C_{i-r,i+1} - C_{i-r,i} + \sum_{k=1}^r \langle u_{i-k}u_i \rangle - \langle u_{i-k} \rangle \langle u_i \rangle$$
(12)

In the steady state the headway correlations vanish. We conclude that for all particle pairs (i-r, i) the difference $C_{i-r,i+1}^* - C_{i-r,i}^*$ of stationary correlation functions is equal and vanishes: $C_{i,i+1}^* - C_{i,i}^* \equiv \lim_{t \to \infty} \langle X_i u_i \rangle$ $-\langle X_i \rangle \langle u_i \rangle = \lim_{t \to \infty} \langle X_{i-r} u_i \rangle - \langle X_{i-r} \rangle \langle u_i \rangle = 0$. Equation (11) then yields $D = \mu_2 \langle u_i^2 \rangle$ and with (3) the main result (8).

The same result could be obtained in a technically more involved manner by explicitly solving (11) for the type of initial distribution envisaged here, i.e., where $\langle u_i \rangle$ and $\langle u_i u_j \rangle$ take their stationary values. This directly yields the steady-state diffusion coefficient $D = \lim_{t \to \infty} (\langle X_i^2 \rangle - \langle X_i \rangle^2)/t$. Notice that the assumption of stationarity of the one-point and two-point headway correlation function does not imply that the measure itself is stationary.⁽⁹⁾

Since the exact diffusion coefficient (8) agrees with the expression obtained from the independent jump approximation⁽⁷⁾ one may wonder whether this approximation is not actually exact as in the case of the totally asymmetric simple exclusion process (TASEP).⁽¹⁰⁾ In the independent-jump approximation the stationary motion of the tracer particle is regarded as a Poisson process. A possible strategy to address this question is the following. We first note that the motion of the tracer particle *i* is, at all times, independent of the motion of all particles i-r to its left. Hence one may study the semi-infinite system with particle *i* at its left boundary. Without loss of generality we take i = 1. Next we define the process in terms of the particle headways u_i where $i \ge 1$. In the context of the TASEP this leads to a totally asymmetric zero-range process where particles move to the left and absorption of particles takes place at the left boundary site 1. Each absorption event corresponds to a single move of the tracer particle. Here we are led to a stick representation⁽¹¹⁾ of the ARAP where u_i represents the length of a stick located on the integer lattice. In each move a fraction δ_i of stick *i* is broken of f and added to stick *i*-1. The motion of the tracer particle corresponds to the absorption at the left boundary of a piece δ_1 of the first stick which takes place after an exponentially distributed random time. Since in the ARAP a jump attempt always succeeds the random time has mean 1. In the steady state the loss δ_1 (i.e., the hopping distance of the tracer particle) is a random variable distributed according to the density $f^*(\delta_1) = \int_0^\infty du \, u^{-1} \phi(\delta_1/u) \, P^*(u)$ where $P^*(u)$ is the stationary headway distribution of the ARAP. If all consecutive hopping increments $\delta_1^{(i)}$ would be independent random variables the steady state motion of the tracer particle would a Poisson process with (random) hopping distance δ_1 . From this one recovers the drift velocity v (6) and the diffusion coefficient (8). Independence remains an open question. The factorization of the headway correlations may possibly give a clue as to why the diffusion coefficient comes out correctly from the independent-jump approximation.

ACKNOWLEDGMENTS

I would like to thank J. Krug and P. Ferrari for useful discussions and in particular J. Krug for sending a draft version of ref. 7 prior to publication. I also thank P. Ferrari and the referee for pointing out a flaw in the discussion of the independent-jump approximation in the original version of the paper. This work was supported by DAAD and CAPES under the PROBRAL programme.

REFERENCES

- V. Privman, ed., Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, Cambridge, 1997).
- 2. T. M. Liggett, Stochastic Interacting Systems (Springer, Berlin, 1999).
- 3. G. M. Schütz, to appear in *Phase Transitions and Critical Phenomena*, C. Domb and J. Lebowitz, eds. (Academic, London, 2000).
- 4. S. Krauss, P. Wagner, and C. Gawron, Phys. Rev. E 54:3707 (1996).
- 5. S. N. Coppersmith, C.-H. Liu, S. Majumdar, O. Narayan, and T.A. Witten, *Phys. Rev. E* 53:4673 (1996).
- 6. P. A. Ferrari and L. R. G. Fontes, El. J. Prob. 3, Paper No. 6 (1998).
- 7. J. Krug and J. Garcia, preprint (1999), to appear in J. Stat. Phys.
- 8. D. Aldous and P. Diaconis, Probab. Theory Relat. Fields 103:199 (1995).
- 9. R. Rajesh and S. N. Majumdar, J. Stat. Phys. 99:943 (2000).
- 10. P. A. Ferrari and L. R. G. Fontes, J. Appl. Prob. 33:411 (1996).
- 11. T. Seppäläinen, El. J. Prob. 1, Paper No. 5 (1996).

Communicated by J. L. Lebowitz