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Exact Tracer Diffusion Coefficient in the Asymmetric
Random Average Process
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We study tracer diffusion in the continuous-time asymmetric random average
process which is an interacting particle system on R generalizing the Hammer-
sley process. From the equations of motion for the particle-position correlations
we obtain the exact tracer diffusion coefficient which is in agreement with a
recent heuristic result by Krug and Garcia.
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Recent work on interacting particle systems far from equilibrium has
focussed on lattice models such as the asymmetric exclusion process and
other lattice gas systems.(1�3) Comparatively little is known about particle
systems defined on the real line which have appeared e.g., in the context of
traffic flow, (4) force propagation in granular media(5) and interface fluctua-
tions.(6) Closely related to the models of refs. 5, 6 is the continuous-time
version of the asymmetric random average process studied recently by
Krug and Garcia.(7) In this model, a generalization of the Hammersley
process, (8) point particles on R jump with constant rate 1 from position xi

to the right to xi+$i where $i is a random fraction of the headway

ui=xi+1&xi (1)

The moves occur in continuous time, i.e., each particle carries its intrinsic
exponential clock: When the clock rings (after an exponentially distributed
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random time with parameter 1), the move is executed. The random jump
length $i is chosen according to a probability density

fi ($i )=u&1
i ,($i �u i ) (2)

normalized to �1
0 dr ,(r)=1.

In ref. 7 it was shown that the stationary two-point headway correla-
tion function (uiuj) of this model factorizes for i{ j. Moreover, for i= j
the second moment (u2) of the headway distribution is given by

(u2) =
+1

\2(+1&+2)
(3)

where \=1�(u) is the stationary particle density and

+n=|
1

0
dr rn,(r)=

1
un+1 |

u

0
dr rn,(r�u) (4)

are the moments of the jump length distribution.
In order to determine the statistical properties of a tracer particle we

introduce the time-dependent joint probability densities Pi1 ,..., ik
(xi1

,..., xik
) of

finding the particles with label i j on positions xij
. For notational simplicity

the dependence on time (and on the initial distribution) is dropped. The
mean position (Xi) of a tracer particle i is then given by

(Xi) =|
�

&�
dx xPi (x) (5)

This yields the stationary drift velocity

v= lim
t � �

d
dt

(X i) (6)

In a similar fashion the tracer diffusion coefficient is obtained from the
asymptotic mean square displacement

D= lim
t � �

d
dt

((X 2
i )&(Xi) 2) (7)

These quantities do not depend on i. For the velocity one finds v=+1�\. (7)

The main result of this paper is the exact derivation of the steady-state
diffusion coefficient

D=
+1 +2

\2(+1&+2)
(8)
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obtained also by Krug and Garcia using two independent heuristic
arguments which lead to an effective Langevin equation for the motion of
the tracer particle and an independent-jump approximation respectively.

The key ingredient in calculating v and D is the master equation
obeyed by the joint probability densities Pi1 ,..., ik

(xi1
,..., x ik

). E.g., for k=1
one has

d
dt

Pi (x)=&Pi (x)+|
�

0
dy1 |

�

0
dy2

1
y1+ y2

_, \ y1

y1+ y2+ Pi, i+1(x& y1 , x+ y2) (9)

The negative contribution results from the particle hopping away from x,
while the positive part counts all possibilities of jumping from a position
x& y1 to x in the interval [x& y1 , x+ y2) between particles i and i+1.
Analogously one finds expressions for higher order joint probability densities.

From the joint probability densities one can calculate the expectation
values (Xi1

} } } Xik
). The key observation necessary for calculating D is the

fact that the equations of motion for these expectation values form a closed
set for each level k. E.g., for k=1 one finds d�dt(Xi)=+1((Xi+1) &(X i) )
which immediately yields the stationary tracer velocity v=+1 �\. The
extension to higher order correlation functions is rather tedious, but
straightforward. Of particular interest is the quantity

Ci, j (t)=(XiXj) &(Xi)(Xj) (10)

After a lengthy sequence of manipulations of integrals involving shifting
integration intervals and interchanging the order of integration we find

d
dt

Ci, j=+1[Ci, j+1+Ci+1, j&2Ci, j]++2(u2
i ) $i, j (11)

with the Kronecker symbol $i, j=1 for i= j and 0 else. This yields the time
derivative of the mean square displacement d�dt Ci, i=+2(u2

i ) +2+1(Ci, i+1

&Ci, i ) and hence an expression for the diffusion coefficient.
To calculate D we use Ci, i+1&C i, i=(Xiui) &(Xi)(ui) and there-

fore

Ci, i+1&Ci, i =Ci&1, i+1&Ci&1, i+(ui&1u i)&(ui&1)(ui)

=Ci&r, i+1&Ci&r, i+ :
r

k=1

(u i&kui)&(ui&k)(ui) (12)
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In the steady state the headway correlations vanish. We conclude that for
all particle pairs (i&r, i) the difference C*i&r, i+1&C*i&r, i of stationary
correlation functions is equal and vanishes: C*i, i+1&C*i, i#limt � � (Xiui)
&(Xi)(ui)=limt � � (Xi&rui) &(Xi&r)(ui)=0. Equation (11) then
yields D=+2(u2

i ) and with (3) the main result (8).
The same result could be obtained in a technically more involved

manner by explicitly solving (11) for the type of initial distribution envisaged
here, i.e., where (ui) and (uiuj) take their stationary values. This directly
yields the steady-state diffusion coefficient D=limt � � ((X 2

i ) &(Xi) 2)�t.
Notice that the assumption of stationarity of the one-point and two-point
headway correlation function does not imply that the measure itself is
stationary.(9)

Since the exact diffusion coefficient (8) agrees with the expression
obtained from the independent jump approximation(7) one may wonder
whether this approximation is not actually exact as in the case of the
totally asymmetric simple exclusion process (TASEP).(10) In the indepen-
dent-jump approximation the stationary motion of the tracer particle is
regarded as a Poisson process. A possible strategy to address this question
is the following. We first note that the motion of the tracer particle i is, at
all times, independent of the motion of all particles i&r to its left. Hence
one may study the semi-infinite system with particle i at its left boundary.
Without loss of generality we take i=1. Next we define the process in
terms of the particle headways ui where i�1. In the context of the TASEP
this leads to a totally asymmetric zero-range process where particles move
to the left and absorption of particles takes place at the left boundary
site 1. Each absorption event corresponds to a single move of the tracer
particle. Here we are led to a stick representation(11) of the ARAP where
ui represents the length of a stick located on the integer lattice. In each
move a fraction $i of stick i is broken off and added to stick i&1. The
motion of the tracer particle corresponds to the absorption at the left
boundary of a piece $1 of the first stick which takes place after an exponen-
tially distributed random time. Since in the ARAP a jump attempt always
succeeds the random time has mean 1. In the steady state the loss $1 (i.e.,
the hopping distance of the tracer particle) is a random variable distributed
according to the density f *($1)=��

0 du u&1,($1 �u) P*(u) where P*(u) is
the stationary headway distribution of the ARAP. If all consecutive hopping
increments $ (i)

1 would be independent random variables the steady state
motion of the tracer particle would a Poisson process with (random) hopping
distance $1 . From this one recovers the drift velocity v (6) and the diffusion
coefficient (8). Independence remains an open question. The factorization of
the headway correlations may possibly give a clue as to why the diffusion
coefficient comes out correctly from the independent-jump approximation.
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